Deconstructions of Reductions from Communication Complexity to Property Testing using Generalized Parity Decision Trees

نویسنده

  • Roei Tell
چکیده

A few years ago, Blais, Brody, and Matulef (2012) presented a methodology for proving lower bounds for property testing problems by reducing them from problems in communication complexity. Recently, Bhrushundi, Chakraborty, and Kulkarni (2014) showed that some reductions of this type can be deconstructed to two separate reductions, from communication complexity to parity decision trees and from the latter to property testing. This work follows up on these ideas. We present a method for deconstructing reductions from communication complexity to property testing, using an intermediary model that is a generalization of parity decision trees. This method yields a new interpretation for several well-known reductions, since we present the reductions as a composition of two steps with fundamentally di erent functionalities. Furthermore, we show a technique for proving lower bounds directly in the intermediary model, apply this technique to prove several lower bounds for natural problems in the model, and derive corresponding lower bounds in property testing. In particular, we provide an alternative proof for a known Ω(k) lower bound on testing k-sparse linear functions over F2, relying on a theorem by Linial and Samorodnitsky (2002). We then extend this result to a new lower bound of Ω(s) for testing s-sparse degree-d polynomials over F2, for any d ∈ N. In addition we provide a simple proof for the hardness of testing some families of linear subcodes. We present an unrelated result in an appendix. In property testing, testers that always accept inputs that are in the property (i.e., testers with one-sided error) are natural and common. We show that the dual notion, testers that always reject inputs that are far from the property, seems to be a notion of limited scope.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deconstructions of Reductions from Communication Complexity to Property Testing using Generalized Parity

A few years ago, Blais, Brody, and Matulef (2012) presented a methodology for proving lower bounds for property testing problems by reducing them from problems in communication complexity. Recently, Bhrushundi, Chakraborty, and Kulkarni (2014) showed that some reductions of this type can be deconstructed to two separate reductions, from communication complexity to randomized parity decision tre...

متن کامل

Property Testing Bounds for Linear and Quadratic Functions via Parity Decision Trees

In this paper, we study linear and quadratic Boolean functions in the context of property testing. We do this by observing that the query complexity of testing properties of linear and quadratic functions can be characterized in terms of complexity in another model of computation called parity decision trees. The observation allows us to characterize testable properties of linear functions in t...

متن کامل

Testing Properties of Boolean Functions

Given oracle access to some boolean function f, how many queries do we need to test whether f is linear? Or monotone? Or whether its output is completely determined by a small number of the input variables? This thesis studies these and related questions in the framework of property testing introduced by Rubinfeld and Sudan (’96). The results of this thesis are grouped into three main lines of ...

متن کامل

On the parity complexity measures of Boolean functions

The parity decision tree model extends the decision tree model by allowing the computation of a parity function in one step. We prove that the deterministic parity decision tree complexity of any Boolean function is polynomially related to the non-deterministic complexity of the function or its complement. We also show that they are polynomially related to an analogue of the block sensitivity. ...

متن کامل

On testing bent functions

A bent function is a Boolean function all of whose Fourier coefficients are equal in absolute value. These functions have been extensively studied in cryptography and play an important role in cryptanalysis and design of cryptographic systems. We study bent functions in the framework of property testing. In particular, we show that testing whether a given Boolean function on n variables is bent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014